More than 13 billion light years from Earth, the quasar J0313–1806 radiates vast quantities of electromagnetic radiation. This body, formed just 670 million years after the Big Bang, is seen shining with 1000 times the total light produced by the Milky Way Galaxy. The supermassive black hole at its center is more than 1.6 billion times more massive than the Sun.
At a distance of more than 13.03 billion light years from Earth, J0313–1806 is the most distant— and thus the most ancient — quasar yet seen by astronomers. This supermassive black hole is seen radiating vast quantities of radiation when the Universe was just 5% of the current age of the Cosmos. This body is 20 million light years more distant than the previous record-holder for the most distant quasar known, discovered just three years ago.
Let it eat… it’s a growing quasar…
This ancient body feeds extreme quasar winds, sending charged particles racing away from the object at 20% of the speed of light. The host galaxy housing J0313–1806 was also a region where vast numbers of stars were born. While just one star is born each year, on average, in the Milky Way, the host galaxy for this quasar sees around 200 stars light up for the first time each year.
The supermassive black hole at the core of this system is thought to be ingesting the equivalent of 25 Suns every year, driving winds of hot plasma from the body.
This extreme age challenges notions of the formation of thefirst black holes in the Universe. Astronomers are puzzled learning how this structure formed in such a short period of time.
“This is the earliest evidence of how a supermassive black hole is affecting its host galaxy around it. From observations of less distant galaxies, we know that this has to happen, but we have never seen it happening so early in the universe,” saidFeige Wangfrom Steward Observatory, managed by the University of Arizona.